Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available October 22, 2026
-
Free, publicly-accessible full text available June 11, 2026
-
Free, publicly-accessible full text available February 17, 2026
-
Free, publicly-accessible full text available June 11, 2026
-
Free, publicly-accessible full text available February 1, 2026
-
A comprehensive educational strategy designed to make small-molecule crystallography more accessible for students at various academic levels is described. By integrating hands-on laboratory visits, structured courses and advanced application training, we cultivate a deep understanding of fundamental crystallographic concepts while fostering practical skills. This strategy also aims to inspire novice learners, building their confidence and interest in structural science. Our approach demystifies complex concepts through real-world examples and interactive case-learning modules, enabling students to proficiently apply crystallography in their research. The resulting educational impact is evident in numerous publications from undergraduates, scholarship awards to graduates and successful independent research projects, highlighting the effectiveness of our programme in inspiring the next generation of chemical crystallographers.more » « lessFree, publicly-accessible full text available February 1, 2026
-
Lewis acid catalyzed condensation of pyrrole and 4-fluoro-2,6-dimethylbenzaldehyde followed by chemical oxidation afforded the corresponding chlorin along with the parent porphyrin. The subsequent metalation of the porphyrin-chlorin mixture in the presence of Zn(OAc)2•2H2O afforded Zn monoand di-hydroxychlorins in addition to the Zn porphyrin in a one-flask synthesis. This new direct hydroxylation reaction eliminates the need for highly toxic OsO4and H2S that are traditionally used for the generation of hydroxy chlorins. In addition to the full characterization of the zinc chlorins, we present cyclic voltammograms, steady-state absorption, and emission profiles of this rarely available class of compounds. Our findings show that Zn mono- and di-hydroxychlorins are stable compounds that possess exceptionally long triplet excited states in solution, making them promising candidates for photodynamic therapy.more » « lessFree, publicly-accessible full text available July 1, 2026
An official website of the United States government
